Molecular- and Atomic-Level Approaches to Characterize Dissolved Organic Matter: Insights for Mercury Bioavailability in the Florida Everglades

Brett A. Poulin¹, Sara Breitmeyer¹, Matthew Jones², Joseph Ryan², William Orem³, David P. Krabbenhoft⁴

¹U.S. Geological Survey, Boulder, CO, USA
²University of Colorado Boulder, Boulder, CO, USA
³U.S. Geological Survey, Reston, VA, USA
⁴U.S. Geological Survey, Middleton, WI, USA

Gerbig et al., 2011, ES&T 45, 9180-9187. Poulin et al. 2017, ES&T 51, 13133-13142.

Greater Everglades Ecosystem

Research Goal: Provide a process-level understanding of the biogeochemical controls on mercury methylation (synergistic and antagonistic) from interactions of mercury, sulfur, and <u>DOM</u>.

- [DOC]
- DOM aromaticity (i.e., SUVA)
- DOM reduced sulfur content
 - Molecular-level and atomic-level approaches

Inform restoration management

Conceptual Model

Methods

All Sites: Aqueous Characterization

- Sulfide (ISE)
- Anions (SO₄²⁻, NO₃⁻, Cl⁻)
- Cation (Na⁺, NH₄⁺, K⁺, Mg²⁺, Ca²⁺)
- [DOC] and DOM SUVA₂₅₄

- Sulfide removed by purging (pH 5)
- Isolation of HPOA fraction with <u>anoxic solutions</u>
 - ~50% of the DOC
- Salt-free extract analyzed for
 - elemental composition
 - FT-ICR-MS
 - S XANES
 - Stable S isotope signature

Method by Aiken et al., 1992

Molecular-Level Measurement

Atomic Level Measurements

 Sulfur K-Edge XANES spectroscopy (Advanced Photon Source; 9-BM-B)
 Distribution of sulfur speciation

Stable Sulfur Isotope Measurement

USGS Reston Stable Isotope Laboratory

Conceptual Model

Total Sulfur Content

Sulfur XANES Analysis

FT-ICR-MS

Poulin et al., 2017 Environ. Sci. Technol. 51, 3630-3639.

Pore Water – Surface Water Exchange

Organic S Oxidation – Field Evidence

Poulin et al., 2017 Environ. Sci. Technol. 51, 3630-3639.

Organic S Oxidation – Lab Evidence

Organic S Oxidation – Lab Evidence

Organic S Oxidation – Lab Evidence

Conclusions and Implications

- Complementary use of molecular and atomic-level measurements to provide a process-level understanding of controls on DOM sulfur chemistry in the Everglades
- Sulfurization of DOM is anticipated to enhance the bioavailability of mercury in Everglades wetlands.
 - S-enriched DOM is delivered south towards Everglades National Park
- Reduced organic sulfur groups are labile to photochemical oxidation.
- Established predictive relationships to estimate DOM S speciation based on sulfur content.

Acknowledgements

Colleagues

George Aiken (USGS WMA)

Mike Tate (USGS UMWSC)

Kathryn Nagy (Univ. Illinois Chicago)

- Priority Ecosystems Sciences Program
- Water Mission Area
- Environmental Health Toxics and Contaminants Programs

National Science Foundation (EAR-1629698, EAR-1628956)

Stable Sulfur Isotope Measurements

